Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
Virology ; 594: 110052, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38507920

RESUMO

SARS-CoV-2 infection causes activation of endothelial cells (ECs), leading to dysmorphology and dysfunction. To study the pathogenesis of endotheliopathy, the activation of ECs in lungs of cynomolgus macaques after SARS-CoV-2 infection and changes in nicotinamide adenine dinucleotide (NAD) metabolism in ECs were investigated, with a focus on the CD38 molecule, which degrades NAD in inflammatory responses after SARS-CoV-2 infection. Activation of ECs was seen from day 3 after SARS-CoV-2 infection in macaques, with increases of intravascular fibrin and NAD metabolism-associated enzymes including CD38. In vitro, upregulation of CD38 mRNA in human ECs was detected after interleukin 6 (IL-6) trans-signaling induction, which was increased in the infection. In the presence of IL-6 trans-signaling stimulation, however, CD38 mRNA silencing induced significant IL-6 mRNA upregulation in ECs and promoted EC apoptosis after stimulation. These results suggest that upregulation of CD38 in patients with COVID-19 has a protective role against IL-6 trans-signaling stimulation induced by SARS-CoV-2 infection.


Assuntos
COVID-19 , Humanos , Animais , COVID-19/metabolismo , Células Endoteliais/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , NAD , SARS-CoV-2/metabolismo , Macaca/metabolismo , RNA Mensageiro/metabolismo
2.
J Neuroimmunol ; 387: 578288, 2024 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-38237527

RESUMO

We examined the histopathological changes in the olfactory mucosa of cynomolgus and rhesus macaque models of SARS-CoV-2 infection. SARS-CoV-2 infection induced severe inflammatory changes in the olfactory mucosa. A major histocompatibility complex (MHC) class II molecule, HLA-DR was expressed in macrophage and supporting cells, and melanocytes were increased in olfactory mucosa. Supporting cells and olfactory neurons were infected, and SARS-CoV-2 N protein was detected in the axons of olfactory neurons and in olfactory bulbs. Viral RNA was detected in olfactory bulbs and brain tissues. The olfactory epithelium-olfactory bulb pathway may be important as a route for intracranial infection by SARS-CoV-2.


Assuntos
COVID-19 , Bulbo Olfatório , Animais , Bulbo Olfatório/metabolismo , Bulbo Olfatório/patologia , SARS-CoV-2 , COVID-19/patologia , Macaca mulatta , Mucosa Olfatória/metabolismo , Mucosa Olfatória/patologia , Inflamação/metabolismo , Macaca fascicularis
3.
HLA ; 103(1): e15316, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38226402

RESUMO

Macaques are useful animal models for studying the pathogenesis of rheumatoid arthritis (RA) and the development of anti-rheumatic drugs. The purpose of this study was to identify the major histocompatibility complex (MHC) polymorphisms associated with the pathology of collagen-induced arthritis (CIA) and anti-collagen IgG induction in a cynomolgus macaque model, as MHC polymorphisms affect the onset of CIA in other animal models. Nine female Filipino cynomolgus macaques were immunized with bovine type II collagen (b-CII) to induce CIA, which was diagnosed clinically by scoring the symptoms of joint swelling over 9 weeks. MHC polymorphisms and anti-b-CII antibody titers were compared between symptomatic and asymptomatic macaques. Four of 9 (44%) macaques were defined as the CIA-affected group. Anti-b-CII IgG in the affected group increased in titer approximately 3 weeks earlier compared with the asymptomatic group. The mean plasma IgG1 titer in the CIA-affected group was significantly higher (p < 0.05) than that of the asymptomatic group. Furthermore, the cynomolgus macaque MHC (Mafa)-DRB1*10:05 or Mafa-DRB1*10:07 alleles, which contain the well-documented RA-susceptibility five amino acid sequence known as the shared epitope (SE) in positions 70 to 74, with valine at position 11 (Val11, V11) and phenylalanine at position 13 (Phe13, F13), were detected in the affected group. In contrast, no MHC polymorphisms specific to the asymptomatic group were identified. In conclusion, the presence of V11 and F13 along with SE in the MHC-DRB1 alleles seems essential for the production of IgG1 and the rapid induction of severe CIA in female Filipino cynomolgus macaques.


Assuntos
Artrite Experimental , Artrite Reumatoide , Animais , Feminino , Bovinos , Epitopos , Artrite Experimental/genética , Aminoácidos , Alelos , Complexo Principal de Histocompatibilidade , Macaca fascicularis/genética , Artrite Reumatoide/genética , Imunoglobulina G
4.
Cell Stem Cell ; 30(10): 1315-1330.e10, 2023 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-37802037

RESUMO

COVID-19 is linked to endotheliopathy and coagulopathy, which can result in multi-organ failure. The mechanisms causing endothelial damage due to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) remain elusive. Here, we developed an infection-competent human vascular organoid from pluripotent stem cells for modeling endotheliopathy. Longitudinal serum proteome analysis identified aberrant complement signature in critically ill patients driven by the amplification cycle regulated by complement factor B and D (CFD). This deviant complement pattern initiates endothelial damage, neutrophil activation, and thrombosis specific to organoid-derived human blood vessels, as verified through intravital imaging. We examined a new long-acting, pH-sensitive (acid-switched) antibody targeting CFD. In both human and macaque COVID-19 models, this long-acting anti-CFD monoclonal antibody mitigated abnormal complement activation, protected endothelial cells, and curtailed the innate immune response post-viral exposure. Collectively, our findings suggest that the complement alternative pathway exacerbates endothelial injury and inflammation. This underscores the potential of CFD-targeted therapeutics against severe viral-induced inflammathrombotic outcomes.


Assuntos
COVID-19 , Animais , Humanos , SARS-CoV-2 , Fator D do Complemento , Células Endoteliais , Haplorrinos
5.
Vaccine ; 41(3): 787-794, 2023 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-36526501

RESUMO

Among inactivated influenza vaccines, the whole virus particle vaccine (WPV) elicits superior priming responses to split virus vaccine (SV) in efficiently inducing humoral and cellular immunity. However, there is concern for undesired adverse events such as fever for WPV due to its potent immunogenicity. Therefore, this study investigated the febrile response induced by subcutaneous injection with quadrivalent inactivated influenza vaccines of good manufacturing grade for pharmaceutical or investigational products in cynomolgus macaques. Body temperature was increased by 1 °C-2 °C for 6-12 h after WPV administration at the first vaccination but not at the second shot, whereas SV did not affect body temperature at both points. Given the potent priming ability of WPV, WPV-induced fever may be attributed to immune responses that uniquely occur during priming. Since WPV-induced fever was blunted by pretreatment with indomethacin (a cyclooxygenase inhibitor), the febrile response by WPV is considered to depend on the increase in prostaglandins synthesized by cyclooxygenase. In addition, WPV, but not SV, induced the elevation of type I interferons and monocyte chemotactic protein 1 in the plasma; these factors may be responsible for pyrogenicity caused by WPV, as they can increase prostaglandins in the brain. Notably, sufficient antibody responses were acquired by half the amount of WPV without causing fever, suggesting that excessive immune responses to trigger the febrile response is not required for acquired immunity induction. Thus, we propose that WPV with a reduced antigen dose should be evaluated for potential clinical usage, especially in naïve populations.


Assuntos
Vacinas contra Influenza , Influenza Humana , Orthomyxoviridae , Animais , Humanos , Influenza Humana/prevenção & controle , Macaca fascicularis , Febre/induzido quimicamente , Vacinas de Produtos Inativados , Prostaglandinas , Anticorpos Antivirais
6.
Front Microbiol ; 13: 967019, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36466631

RESUMO

As long as the coronavirus disease-2019 (COVID-19) pandemic continues, new variants of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) with altered antigenicity will emerge. The development of vaccines that elicit robust, broad, and durable protection against SARS-CoV-2 variants is urgently required. We have developed a vaccine consisting of the attenuated vaccinia virus Dairen-I (DIs) strain platform carrying the SARS-CoV-2 S gene (rDIs-S). rDIs-S induced neutralizing antibody and T-lymphocyte responses in cynomolgus macaques and human angiotensin-converting enzyme 2 (hACE2) transgenic mice, and the mouse model showed broad protection against SARS-CoV-2 isolates ranging from the early-pandemic strain (WK-521) to the recent Omicron BA.1 variant (TY38-873). Using a tandem mass tag (TMT)-based quantitative proteomic analysis of lung homogenates from hACE2 transgenic mice, we found that, among mice subjected to challenge infection with WK-521, vaccination with rDIs-S prevented protein expression related to the severe pathogenic effects of SARS-CoV-2 infection (tissue destruction, inflammation, coagulation, fibrosis, and angiogenesis) and restored protein expression related to immune responses (antigen presentation and cellular response to stress). Furthermore, long-term studies in mice showed that vaccination with rDIs-S maintains S protein-specific antibody titers for at least 6 months after a first vaccination. Thus, rDIs-S appears to provide broad and durable protective immunity against SARS-CoV-2, including current variants such as Omicron BA.1 and possibly future variants.

7.
iScience ; 25(12): 105596, 2022 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-36406861

RESUMO

The use of therapeutic neutralizing antibodies against SARS-CoV-2 infection has been highly effective. However, there remain few practical antibodies against viruses that are acquiring mutations. In this study, we created 494 monoclonal antibodies from patients with COVID-19-convalescent, and identified antibodies that exhibited the comparable neutralizing ability to clinically used antibodies in the neutralization assay using pseudovirus and authentic virus including variants of concerns. These antibodies have different profiles against various mutations, which were confirmed by cell-based assay and cryo-electron microscopy. To prevent antibody-dependent enhancement, N297A modification was introduced. Our antibodies showed a reduction of lung viral RNAs by therapeutic administration in a hamster model. In addition, an antibody cocktail consisting of three antibodies was also administered therapeutically to a macaque model, which resulted in reduced viral titers of swabs and lungs and reduced lung tissue damage scores. These results showed that our antibodies have sufficient antiviral activity as therapeutic candidates.

8.
Methods Mol Biol ; 2556: 31-35, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36175624

RESUMO

We described a method to detect α2-3 linked and α2-6 linked sialic acids on the cell surface with using flow cytometry. Cells were fixed with 4% paraformaldehyde, and then α2-3 and α2-6 sialic acids were stained with biotinylated MAACKIA AMURENSIS LECTIN II (MALII) and biotinylated ELDERBERRY BARK LECTIN (SNA), respectively. Sialic acids on the cell surface were cleaved by sialidase in acetate buffer at pH 5.5 to confirm the specificity of staining. Streptavidin conjugated with Alexa flour 488 was used to detect biotinylated lectins. Thus, the α2-3 linked and α2-6 linked sialic acids on the cell surface were semi-quantitatively detected by flow cytometry.


Assuntos
Neuraminidase , Ácidos Siálicos , Farinha , Citometria de Fluxo , Lectinas , Estreptavidina
9.
Vaccine ; 40(30): 4026-4037, 2022 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-35641357

RESUMO

The All-Japan Influenza Vaccine Study Group has been developing a more effective vaccine than the current split vaccines for seasonal influenza virus infection. In the present study, the efficacy of formalin- and/or ß-propiolactone-inactivated whole virus particle vaccines for seasonal influenza was compared to that of the current ether-treated split vaccines in a nonhuman primate model. The monovalent whole virus particle vaccines or split vaccines of influenza A virus (H1N1) and influenza B virus (Victoria lineage) were injected subcutaneously into naïve cynomolgus macaques twice. The whole virus particle vaccines induced higher titers of neutralizing antibodies against H1N1 influenza A virus and influenza B virus in the plasma of macaques than did the split vaccines. At challenge with H1N1 influenza A virus or influenza B virus, the virus titers in nasal swabs and the increases in body temperatures were lower in the macaques immunized with the whole virus particle vaccine than in those immunized with the split vaccine. Repertoire analyses of immunoglobulin heavy chain genes demonstrated that the number of B-lymphocyte subclones was increased in macaques after the 1st vaccination with the whole virus particle vaccine, but not with the split vaccine, indicating that the whole virus particle vaccine induced the activation of vaccine antigen-specific B-lymphocytes more vigorously than did the split vaccine at priming. Thus, the present findings suggest that the superior antibody induction ability of the whole virus particle vaccine as compared to the split vaccine is attributable to its stimulatory properties on the subclonal differentiation of antigen-specific B-lymphocytes.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Vacinas contra Influenza , Influenza Humana , Infecções por Orthomyxoviridae , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , Linfócitos B , Genes de Imunoglobulinas , Humanos , Influenza Humana/prevenção & controle , Macaca fascicularis , Vacinação , Vacinas de Produtos Inativados , Vírion
10.
Mol Ther Oncolytics ; 24: 77-86, 2022 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-35024435

RESUMO

To develop effective adoptive cell transfer therapy using T cell receptor (TCR)-engineered T cells, it is critical to isolate tumor-reactive TCRs that have potent anti-tumor activity. In humans, tumor-infiltrating lymphocytes (TILs) have been reported to contain CD8+PD-1+ T cells that express tumor-reactive TCRs. Characterization of tumor reactivity of TILs from non-human primate tumors could improve anti-tumor activity of TCR-engineered T cells in preclinical research. In this study, we sought to isolate TCR genes from CD8+PD-1+ T cells among TILs in a cynomolgus macaque model of tumor transplantation in which the tumors were infiltrated with CD8+ T cells and were eventually rejected. We analyzed the repertoire of TCRα and ß pairs obtained from single CD8+PD-1+ T cells in TILs and circulating lymphocytes and identified multiple TCR pairs with high frequency, suggesting that T cells expressing these recurrent TCRs were clonally expanded in response to tumor cells. We further showed that the recurrent TCRs exhibited cytotoxic activity to tumor cells in vitro and potent anti-tumor activity in mice transplanted with tumor cells. These results imply that this tumor transplantation macaque model recapitulates key features of human TILs and can serve as a platform toward preclinical studies of non-human primate tumor models.

11.
Methods Mol Biol ; 2454: 625-641, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-32833131

RESUMO

Induced pluripotent stem cells (iPSCs) are useful for the development of therapies in regenerative medicine, analysis of pathogenesis, and exploration of candidate drugs. We developed an alternative usage of iPSCs of which the MHC haplotype is matched to transplantable recipients in a cynomolgus macaque model. We established two cancer cell lines, embryonal carcinoma, and glioblastoma cell lines from cynomolgus monkey iPSCs. Here, we describe a method to induce the cancer cell lines including a technique for culture of the monkey iPSCs on feeder cells and the induction of hematopoietic stem cells and neural progenitor cells from monkey iPSCs.


Assuntos
Carcinoma Embrionário , Glioblastoma , Células-Tronco Pluripotentes Induzidas , Animais , Carcinoma Embrionário/metabolismo , Diferenciação Celular , Linhagem Celular , Células Cultivadas , Glioblastoma/metabolismo , Macaca fascicularis
12.
Vaccine ; 39(29): 3940-3951, 2021 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-34090697

RESUMO

Current detergent or ether-disrupted split vaccines (SVs) for influenza do not always induce adequate immune responses, especially in young children. This contrasts with the whole virus particle vaccines (WPVs) originally used against influenza that were immunogenic in both adults and children but were replaced by SV in the 1970s due to concerns with reactogenicity. In this study, we re-evaluated the immunogenicity of WPV and SV, prepared from the same batch of purified influenza virus, in cynomolgus macaques and confirmed that WPV is superior to SV in priming potency. In addition, we compared the ability of WPV and SV to induce innate immune responses, including the maturation of dendritic cells (DCs) in vitro. WPV stimulated greater production of inflammatory cytokines and type-I interferon in immune cells from mice and macaques compared to SV. Since these innate responses are likely triggered by the activation of pattern recognition receptors (PRRs) by viral RNA, the quantity and quality of viral RNA in each vaccine were assessed. Although the quantity of viral RNA was similar in the two vaccines, the amount of viral RNA of a length that can be recognized by PRRs was over 100-fold greater in WPV than in SV. More importantly, 1000-fold more viral RNA was delivered to DCs by WPV than by SV when exposed to preparations containing the same amount of HA protein. Furthermore, WPV induced up-regulation of the DC maturation marker CD86 on murine DCs, while SV did not. The present results suggest that the activation of antigen-presenting DCs, by PRR-recognizable viral RNA contained in WPV is responsible for the effective priming potency of WPV observed in naïve mice and macaques. WPV is thus recommended as an alternative option for seasonal influenza vaccines, especially for children.


Assuntos
Vacinas contra Influenza , Infecções por Orthomyxoviridae , Orthomyxoviridae , Animais , Anticorpos Antivirais , Células Apresentadoras de Antígenos , Camundongos , Infecções por Orthomyxoviridae/prevenção & controle , RNA Viral , Vacinas de Produtos Inativados , Vírion
13.
Nat Commun ; 12(1): 2654, 2021 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-33976181

RESUMO

Most anti-influenza drugs currently used, such as oseltamivir and zanamivir, inhibit the enzymatic activity of neuraminidase. However, neuraminidase inhibitor-resistant viruses have already been identified from various influenza virus isolates. Here, we report the development of a class of macrocyclic peptides that bind the influenza viral envelope protein hemagglutinin, named iHA. Of 28 iHAs examined, iHA-24 and iHA-100 have inhibitory effects on the in vitro replication of a wide range of Group 1 influenza viruses. In particular, iHA-100 bifunctionally inhibits hemagglutinin-mediated adsorption and membrane fusion through binding to the stalk domain of hemagglutinin. Moreover, iHA-100 shows powerful efficacy in inhibiting the growth of highly pathogenic influenza viruses and preventing severe pneumonia at later stages of infection in mouse and non-human primate cynomolgus macaque models. This study shows the potential for developing cyclic peptides that can be produced more efficiently than antibodies and have multiple functions as next-generation, mid-sized biomolecules.


Assuntos
Antivirais/farmacologia , Modelos Animais de Doenças , Glicoproteínas de Hemaglutininação de Vírus da Influenza/metabolismo , Vírus da Influenza A Subtipo H1N1/efeitos dos fármacos , Infecções por Orthomyxoviridae/tratamento farmacológico , Peptídeos/farmacologia , Pneumonia/prevenção & controle , Animais , Antivirais/química , Cães , Feminino , Células HEK293 , Humanos , Vírus da Influenza A Subtipo H1N1/metabolismo , Macaca fascicularis , Células Madin Darby de Rim Canino , Camundongos Endogâmicos BALB C , Estrutura Molecular , Peptídeos/química , Replicação Viral/efeitos dos fármacos
14.
Cell Transplant ; 30: 963689721992066, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33588604

RESUMO

Tumorigenicity of induced pluripotent stem cells (iPSCs) is anticipated when cells derived from iPSCs are transplanted. It has been reported that iPSCs formed a teratoma in vivo in autologous transplantation in a nonhuman primate model without immunosuppression. However, there has been no study on tumorigenicity in major histocompatibility complex (MHC)-matched allogeneic iPSC transplantation with immune-competent hosts. To examine the tumorigenicity of allogeneic iPSCs, we generated four iPSC clones carrying a homozygous haplotype of the MHC. Two clones were derived from female fibroblasts by using a retrovirus and the other two clones were derived from male peripheral blood mononuclear cells by using Sendai virus (episomal approach). The iPSC clones were transplanted into allogenic MHC-matched immune-competent cynomolgus macaques. After transplantation of the iPSCs into subcutaneous tissue of an MHC-matched female macaque and into four testes of two MHC-matched male macaques, histological analysis showed no tumor, inflammation, or regenerative change in the excised tissues 3 months after transplantation, despite the results that iPSCs formed teratomas in immune-deficient mice and in autologous transplantation as previously reported. The results in the present study suggest that there is no tumorigenicity of iPSCs in MHC-matched allogeneic transplantation in clinical application.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Células-Tronco Pluripotentes Induzidas , Complexo Principal de Histocompatibilidade , Transplante Homólogo , Animais , Feminino , Masculino , Carcinogênese , Transplante de Células-Tronco Hematopoéticas/métodos , Células-Tronco Pluripotentes Induzidas/metabolismo , Macaca fascicularis , Complexo Principal de Histocompatibilidade/imunologia , Transplante Homólogo/métodos , Camundongos
15.
Virology ; 554: 97-105, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33412411

RESUMO

We examined the pathogenicity of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) in cynomolgus macaques for 28 days to establish an animal model of COVID-19 for the development of vaccines and antiviral drugs. Cynomolgus macaques infected with SARS-CoV-2 showed body temperature rises and X-ray radiographic pneumonia without life-threatening clinical signs of disease. A neutralizing antibody against SARS-CoV-2 and T-lymphocytes producing interferon (IFN)-γ specifically for SARS-CoV-2 N-protein were detected on day 14 in one of three macaques with viral pneumonia. In the other two macaques, in which a neutralizing antibody was not detected, T-lymphocytes producing IFN-γ specifically for SARS-CoV-2 N protein increased on day 7 to day 14, suggesting that not only a neutralizing antibody but also cellular immunity has a role in the elimination of SARS-CoV-2. Thus, because of similar symptoms to approximately 80% of patients, cynomolgus macaques are appropriate to extrapolate the efficacy of vaccines and antiviral drugs for humans.


Assuntos
Anticorpos Neutralizantes/imunologia , COVID-19/imunologia , Modelos Animais de Doenças , SARS-CoV-2/imunologia , Linfócitos T/imunologia , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , COVID-19/patologia , COVID-19/virologia , Citocinas/sangue , Feminino , Interferon gama/imunologia , Macaca fascicularis , Masculino , Boca/virologia , Cavidade Nasal/virologia , Pneumonia Viral/imunologia , Pneumonia Viral/patologia , Pneumonia Viral/virologia , SARS-CoV-2/patogenicidade , SARS-CoV-2/fisiologia , Carga Viral
16.
Immunol Cell Biol ; 99(1): 97-106, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32741011

RESUMO

Influenza remains a significant global public health burden, despite substantial annual vaccination efforts against circulating virus strains. As a result, novel vaccine approaches are needed to generate long-lasting and universal broadly cross-reactive immunity against distinct influenza virus strains and subtypes. Several new vaccine candidates are currently under development and/or in clinical trials. The successful development of new vaccines requires testing in animal models, other than mice, which capture the complexity of the human immune system. Importantly, following vaccination or challenge, the assessment of adaptive immunity at the antigen-specific level is particularly informative. In this study, using peripheral blood mononuclear cells (PBMCs) from cynomolgus macaques, we describe detection methods and in-depth analyses of influenza virus-specific B cells by recombinant hemagglutinin probes and flow cytometry, as well as the detection of influenza virus-specific CD8+ and CD4+ T cells by stimulation with live influenza A virus and intracellular cytokine staining. We highlight the potential of these assays to be used with PBMCs from other macaque species, including rhesus macaques, pigtail macaques and African green monkeys. We also demonstrate the use of a human cytometric bead array kit in detecting inflammatory cytokines and chemokines from cynomolgus macaques to assess cytokine/chemokine milieu. Overall, the detection of influenza virus-specific B and T cells, together with inflammatory responses, as described in our study, provides useful insights for evaluating novel influenza vaccines. Our data deciphering immune responses toward influenza viruses can be also adapted to understanding immunity to other infections or vaccination approaches in macaque models.


Assuntos
Vacinas contra Influenza , Influenza Humana , Infecções por Orthomyxoviridae , Animais , Anticorpos Antivirais , Chlorocebus aethiops , Citometria de Fluxo , Glicoproteínas de Hemaglutininação de Vírus da Influenza , Humanos , Leucócitos Mononucleares , Macaca mulatta , Camundongos , Linfócitos T , Vacinação
17.
Artigo em Inglês | MEDLINE | ID: mdl-33257455

RESUMO

H7N9 highly pathogenic avian influenza virus (HPAIV) infection in a human was first reported in 2017. A/duck/Japan/AQ-HE29-22/2017 (H7N9) (Dk/HE29-22), found in imported duck meat at an airport in Japan, possesses a hemagglutinin with a multibasic cleavage site, indicating high pathogenicity in chickens, as in the case of other H7 HPAIVs. In the present study, we examined the pathogenicity of Dk/HE29-22 and the effectiveness of a cap-dependent endonuclease inhibitor (baloxavir) and neuraminidase inhibitors (oseltamivir and zanamivir) against infection with this strain in a macaque model (n = 3 for each group). All of the macaques infected with Dk/HE29-22 showed severe signs of disease and pneumonia even after the virus had disappeared from lung samples. Virus titers in macaques treated with baloxavir were significantly lower than those in the other treated groups. After infection, levels of interferon alpha and beta (IFN-α and IFN-ß) in the blood of macaques in the baloxavir group were the highest among the groups, whereas levels of tumor necrosis factor alpha (TNF-α) and interleukin 13 (IL-13) were slightly increased in the untreated group. In addition, immune checkpoint proteins, including programmed death 1 (PD-1) and T cell immunoreceptor with Ig and ITIM domains (TIGIT), were expressed at high levels in the untreated group, especially in one macaque that showed severe signs of disease, indicating that negative feedback responses against vigorous inflammation may contribute to disease progression. In the group treated with baloxavir, the percentages of PD-1-, CTLA-4-, and TIGIT-positive T lymphocytes were lower than those in the untreated group, indicating that reduction in virus titers may prevent expression of immune checkpoint molecules from downregulation of T cell responses.


Assuntos
Subtipo H7N9 do Vírus da Influenza A , Influenza Aviária , Influenza Humana , Infecções por Orthomyxoviridae , Pneumonia Viral , Animais , Galinhas , Endonucleases , Humanos , Macaca fascicularis , Neuraminidase
18.
J Clin Med ; 9(11)2020 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-33213083

RESUMO

Delivery following uterus transplantation (UTx)-an approach for treating uterine factor infertility-has not been reported in nonhuman primate models. Here, six female major histocompatibility complex (MHC)-defined cynomolgus macaques that underwent allogeneic UTx were evaluated. Antithymocyte globulin and rituximab were administered to induce immunosuppression and a triple maintenance regimen was used. Menstruation resumed in all animals with long-term survival, except one, which was euthanized due to infusion associated adverse reaction to antithymocyte globulin. Donor-specific antibodies (DSA) were detected in cases 2, 4, and 5, while humoral rejection occurred in cases 4 and 5. Post-transplant lymphoproliferative disorder (PTLD) developed in cases 2 and 3. Pregnancy was attempted in cases 1, 2, and 3 but was achieved only in case 2, which had haploidentical donor and recipient MHCs. Pregnancy was achieved in case 2 after recovery from graft rejection coincident with DSA and PTLD. A cesarean section was performed at full-term. This is the first report of a successful livebirth following allogeneic UTx in nonhuman primates, although the delivery was achieved via UTx between a pair carrying haploidentical MHCs. Experimental data from nonhuman primates may provide important scientific knowledge needed to resolve unsolved clinical issues in UTx.

19.
J Obstet Gynaecol Res ; 46(11): 2251-2260, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32924267

RESUMO

Uterus transplantation (UTx) is now a treatment for women with uterine factor infertility to have a child. However, UTx is still largely at the experimental stage, and many medical issues remain unsolved. Therefore, adequate studies in large animals including non-human primates are required for validation of these issues. UTx research, especially in non-human primates, can provide important information for its full establishment in humans due to the anatomical and physiological similarities between the two. We accumulated data from UTx studies using cynomolgus macaques since 2009 and established autologous and allogeneic UTx models which led to deliveries after performing the procedure. In this paper, we summarized key points to develop UTx models in cynomolgus macaques based on our experience. UTx models in non-human primates can surely contribute new and beneficial knowledge in this field and can be useful for the further development of UTx in humans.


Assuntos
Infertilidade Feminina , Animais , Feminino , Humanos , Macaca , Útero/transplante
20.
Sci Rep ; 10(1): 13910, 2020 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-32807830

RESUMO

Uterus transplantation (UTx) is a potential option for women with uterine factor infertility to have a child. The clinical features indicating irreversible rejection of the uterus are unknown. In our experimental series of allogeneic UTx in cynomolgus macaques, six female macaques were retrospectively examined, which were unresponsive to treatment with immunosuppressants (i.e. irreversible rejection). Clinical features including general condition, hematology, uterine size, indocyanine green (ICG) fluorescence imaging by laparotomy, and histopathological findings of the removed uterus were evaluated. In all cases, general condition was good at the time of diagnosis of irreversible rejection and thereafter. Laboratory evaluation showed temporary increases in white blood cells, lactate dehydrogenase and C-reactive protein, then these levels tended to decrease gradually. In transabdominal ultrasonography, the uterus showed time-dependent shrinkage after transient swelling at the time of diagnosis of irreversible rejection. In laparotomy, a whitish transplanted uterus was observed and enhancement of the transplanted uterus was absent in ICG fluorescence imaging. Histopathological findings in each removed uterus showed hyalinized fibrosis, endometrial deficit, lymphocytic infiltration and vasculitis. These findings suggest that uterine transplantation rejection is not fatal, in contrast to rejection of life-supporting organs. Since the transplanted uterus with irreversible rejection atrophies naturally, hysterectomy may be unnecessary.


Assuntos
Rejeição de Enxerto/patologia , Útero/transplante , Animais , Proteína C-Reativa/metabolismo , Feminino , Rejeição de Enxerto/sangue , Terapia de Imunossupressão , Verde de Indocianina/química , L-Lactato Desidrogenase/metabolismo , Laparotomia , Contagem de Leucócitos , Macaca fascicularis , Imagem Óptica , Fatores de Tempo , Transplante Homólogo , Ultrassonografia , Útero/diagnóstico por imagem , Útero/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...